الثلاثاء، 15 يناير 2013

مبرهنة فيثاغورس المباشرة


مبرهنة فيثاغورس المباشرة:


وهي الشكل الأكثر شهرة لمبرهنة فيثاغورس:

« في مثلث قائم الزاوية، مربع طول الوتر يساوي مجموع مربعي طولي الضلعين المحاذيين للزاوية القائمة. »
Rtriangle.svg
في مثلث ABC قائم الزاوية في C، أي أن [AB] هو الوتر، نضع AB=c و AC=b و BC=a. لدينا:
BC^2+AC^2=AB^2\,
أو
a^2+b^2=c^2\,
تمكن مبرهنة فيثاغورس من حساب طول أحد أضلاع 
مثلث قائم الزاوية بمعرفة طولي الضلعين الآخرين. مثلا: إذا كان b=3 و a=4 فإن

a^2+b^2=3^2+4^2=25=c^2\,

ومنه c = 5\,.

مثلوث ثلاثة أعداد صحيحة تمثل أطوال أضلاع مثلث قائم الزاوية، مثل (5 ،4 ،3)، 
يسمى مثلوث فيثاغورس.



مبرهنة فيثاغورس العكسية:


« في مثلث، إذا كان مربع طول أطول ضلع يساوي مجموع مربعي طولي الضلعين الآخرين، فإن هذا المثلث قائم الزاوية. الزاوية القائمة هي الزاوية المقابلة لأطول ضلع، والضلع الأطول هو الوتر. »

مبرهنة فيثاغورس هي خاصية مميزة للمثلث القائم الزاوية. بتعبير آخر:

« في مثلث ABC، إذا كان AC²+BC²=AB² فإن هذا المثلث قائم الزاوية في C.»
Rtriangle.svg











المصادرو المراجع:
   مبرهنة فيثاغورس    http://ar.wikipedia.org

ليست هناك تعليقات:

إرسال تعليق