مبرهنة فيثاغورس المباشرة:
وهي الشكل الأكثر شهرة لمبرهنة فيثاغورس:
« في مثلث قائم الزاوية، مربع طول الوتر يساوي مجموع مربعي طولي الضلعين المحاذيين للزاوية القائمة. »
في مثلث ABC قائم الزاوية في C، أي أن [AB] هو الوتر، نضع AB=c و AC=b و BC=a. لدينا:
أو
تمكن مبرهنة فيثاغورس من حساب طول أحد أضلاع
مثلث قائم الزاوية بمعرفة طولي الضلعين الآخرين. مثلا: إذا كان b=3 و a=4 فإن
ومنه
.
مثلوث ثلاثة أعداد صحيحة تمثل أطوال أضلاع مثلث قائم الزاوية، مثل (5 ،4 ،3)،
يسمى مثلوث فيثاغورس.
مبرهنة فيثاغورس العكسية:
« في مثلث، إذا كان مربع طول أطول ضلع يساوي مجموع مربعي طولي الضلعين الآخرين، فإن هذا المثلث قائم الزاوية. الزاوية القائمة هي الزاوية المقابلة لأطول ضلع، والضلع الأطول هو الوتر. »
مبرهنة فيثاغورس هي خاصية مميزة للمثلث القائم الزاوية. بتعبير آخر:
« في مثلث ABC، إذا كان AC²+BC²=AB² فإن هذا المثلث قائم الزاوية في C.»
المصادرو المراجع:
مبرهنة فيثاغورس http://ar.wikipedia.org
ليست هناك تعليقات:
إرسال تعليق